If it's not what You are looking for type in the equation solver your own equation and let us solve it.
54=18/b^2(b^3)
We move all terms to the left:
54-(18/b^2(b^3))=0
Domain of the equation: b^2b^3)!=0We get rid of parentheses
b!=0/1
b!=0
b∈R
-18/b^2b^3+54=0
We multiply all the terms by the denominator
54*b^2b^3-18=0
Wy multiply elements
54b^2-18=0
a = 54; b = 0; c = -18;
Δ = b2-4ac
Δ = 02-4·54·(-18)
Δ = 3888
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3888}=\sqrt{1296*3}=\sqrt{1296}*\sqrt{3}=36\sqrt{3}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-36\sqrt{3}}{2*54}=\frac{0-36\sqrt{3}}{108} =-\frac{36\sqrt{3}}{108} =-\frac{\sqrt{3}}{3} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+36\sqrt{3}}{2*54}=\frac{0+36\sqrt{3}}{108} =\frac{36\sqrt{3}}{108} =\frac{\sqrt{3}}{3} $
| 3-(3/4)n=9 | | 4y^2=24y | | (3/8)q+12=36 | | (5a)^3a=1 | | 30=10x^2 | | 2+3(z-3)=z+3z+6z. | | 7x+3=x-3x-4x | | (-2/5)c-8=32 | | x+4x=1754x=175 | | 15+p=3 | | x+4x+1754x=175 | | -10+9x+7x+10=180 | | -10+10x+8x+12=180 | | 2(3x+4)-3(4x-5)=17 | | 11x+8+12x+1=180 | | 13t/14-t/7=1 | | 4x*4-40=27x*2 | | 37x+13=6(6x+3) | | (3x-15)+(2x+24)+(2x)+(2x)=360 | | 5x-2x+6=x-7+13 | | 5x-2x+6=x-7 | | 5x-2x=6=x-7+13 | | 4(2x-5)=5x4 | | 5x-6-7x=x | | 2(X+1)=6x+9 | | 3a+43=49 | | 5+7/2y=4 | | 2m3+m3=0 | | 42-4f=19 | | 2*10=5*x | | 6x+16-5x=11 | | 5(4x-3(=-25 |